Proteus Industries Inc. 340 Pioneer Way, Mountain View, CA 94041 Tel: (650) 964-4163 Fax: (650) 965-0304 www.proteusind.com sales@proteusind.com

1000 Series RoHS Compliant Flow Switches Installation and Operating Instructions

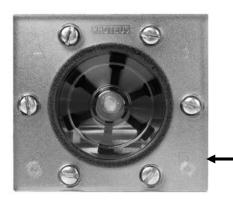
This document provides basic information describing the plumbing and electrical connections to install and make operational your 1000 Series Flow Switch.

A comprehensive Technical Reference Manual for these devices can be downloaded from the Proteus Industries Website at www.proteusind.com/1000/1000TRM.pdf.

This manual includes technical descriptions, performance specifications, dimensions, mounting instructions, pressure drop curves, maintenance instructions, product warranty information and part numbers for replacement parts.

If you are unable to access the Internet to obtain this manual, a printed copy can be mailed to you. Please write, call or fax us with your request.

Flow Ranges


Flow Range		Connection	Part Number			
GPM	LPM	Connection	Polypropylene	Brass	316 Stainless Steel	
0.05 – 0.3	0.2 – 1.5	1⁄4" FNPT		01004BN03	01004SN03	
0.06 – 0.6	0.3 – 2.3	1⁄4" FNPT	01004PN06			
0.1 – 1.0	0.4 – 3.8	1⁄4" FNPT	01004PN1	01004BN1	01004SN1	
0.2 – 2.5	0.75 – 9.5	1⁄4" FNPT	01004PN2	01004BN2	01004SN2	
0.2 – 2.5	0.75 – 9.5	%₁₀-18 SAE			01006SA2	
0.3 – 4.5	1.1 – 17	1⁄4" FNPT	01004PN4	01004BN4	01004SN4	
0.3 – 4.5	1.1 – 17	%₁₀-18 SAE			01006SA4	
0.6 – 9.0	2.3 – 34	¾" FNPT		01006BN9	01006SN9	
0.6 – 10.0	2.3 – 38	¾" FNPT	01006PN10			
0.8 – 10	3 – 38	¾-16 SAE			01008SA10	
1.0 – 14	3.8 – 53	1⁄2" FNPT	01008PN14	01008BN14	01008SN14	
1.2 – 16	4.5 – 60	¾" FNPT		01012BN16	01012SN16	
1.2 – 16	4.5 – 60	11/16-12 SAE			01012SA16	
1.5 – 19	6 – 72	¾" FNPT	01012PN19			
3 – 40	11 – 150	¾" FNPT		01012BN40	01012SN40	
4 – 40	15 – 150	1" FNPT		01016BN40	01016SN40	
4 – 40	15 – 150	1⁵⁄ ₁₆ -12 SAE			01016SA40	
4 – 50	15 – 190	1" FNPT	01016PN50			
5 – 60	18 – 225	1" FNPT		01016BN60	01016SN60	

Temperature & Pressure Operating Limits

Flow Sensor Material	Faceplate Material	Temperature Limit*		Pressure Limit	
Tiow denser material		°C	°F	PSI	kPA
Brass	Clear polysulfone	90	194	100	690
Polypropylene	Clear polysulfone	70	158	75	515
Stainless Steel	Clear polysulfone	90	194	100	690
Brass	Brass	100	212	250	1720
Stainless Steel	Stainless Steel	100	212	250	1720

* This is the fluid temperature that can be sustained with the flow meter cooled by ambient air at 20°C.

1. Connect Plumbing

01004BN03, 01004SN03, 01004PN06 01004BN1, 01004SN1 and 01004PN1

Liquid flow MUST enter at the arrowed port D to achieve the rated flow ranges.

2. Make Electrical Connections

Color	Function		
Brown	Supply Voltage	24 VDC	
White	24 V Return	0 VDC	
Black	Relay Common		
Red	Relay NO Contact		
Green	Relay NC Contact		

- Do NOT exceed the pressure limit of the faceplate.
- Do NOT use SWAK®, Loctite® or other anaerobic pipe sealants with devices with a clear plastic faceplate.

Vapor from these materials cause the faceplate to crack!

- Do NOT install metal fittings into polypropylene units. Excessive torque can cause the sensor to crack.
- 1. Identify the type and size of connections from the Model Number Table above.

Do NOT exceed the flow limit of your flow sensor!

2. For units 01004BN03, 01004SN03, 01004PN06, 01004BN1, 01004SN1 and 01004PN1, the liquid flow MUST enter the flow sensor at the port with the SMALLER orifice.

For all other units, orifices are identical at both ports and the liquid flow can enter at either of the available ports.

- 3. Use PTFE tape or paste to lubricate and seal NPT threads, or PTFE paste to lubricate SAE straight threads.
- 4. Turn on your liquid flow slowly and check for leaks at the connections. Tighten connections as required to eliminate leaks.
 - 1. Locate the 24VDC power source and turn it OFF.
 - 2. Connect the WHITE wire to the Return or -VDC power connection.
 - The relay is energized with the relay common contact connecting to the relay NO contact when the flow rate is above the trip point setting. The relay is not energized with the relay common contact connecting to the relay NC contact when the flow rate is below the trip point setting.
 - ★ To monitor the NC relay state, connect your external device to the BLACK and GREEN wires.
 - ★ To monitor the NO relay state, connect your external device to the BLACK and RED wires.
 - 4. Connect the BROWN wire to the +24VDC source connection.
 - 5. Turn the 24VDC power source ON.

3. Adjust Trip Point If a label on the back cover shows a factory-set trip point, no adjustment is needed.

- 1. Remove the green label on the back of the unit to access the trip point adjustment screw.
- Install the flow switch in your actual circuit or calibration bench. If a calibration bench is used, ensure that the inlet fitting is of the same form as that used in your actual circuit.
- 3. Adjust the actual flow rate to the minimum flow rate at which the trip point is to be set. Ensure that all air is removed from the flow switch BEFORE adjusting the trip point.
- Connect an ohmmeter between the black and green or black and red wires.
 With a small insulated screwdriver, adjust the potentiometer until the ohmmeter shows that

the relay has changed state. *Turn the potentiometer clockwise to INCREASE the trip point flow rate. Turn the potentiometer counter-clockwise to DECREASE the trip point flow rate.*

6. The trip point is slightly different for rising and falling flow rates. It is recommended that the trip point be set on a falling flow rate.